Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Dwarf galaxies are uniquely sensitive to feedback processes and known to experience substantial mass and metal loss from their disks. Here, we investigate the circumgalactic medium (CGM) of 64 isolated dwarf galaxies ( ) atz= 0 from the Marvel-ous Dwarfs and Marvelous Massive Dwarfs simulations. Our galaxies produce column densities broadly consistent with current observations. We investigate these column densities in the context of mass and metal retention rates, and CGM physical properties. We find 48% ± 11% of all baryons withinR200creside in the CGM, with ∼70% of CGM mass existing in a warm gas phase, 104.5 < T < 105.5K, that dominates beyondr/R200c ∼ 0.5. The warm and cool (104.0 < T < 104.5K) gas phases each retain 5%–10% of metals formed by the dwarf galaxy. The significant fraction of mass and metals residing in the warm CGM phase provides an interpretation for the lack ofz ∼ 0 low ion detections beyondb/R200c ∼ 0.5, as the majority of mass in this region exists in higher ions. We find a weak correlation between galaxy mass and total CGM metal retention despite the fraction of metals lost from the halo increasing from ∼10% to >40% toward lower masses. Our findings highlight the CGM (particularly its warm phase) as a key reservoir of mass and metals for dwarf galaxies across stellar masses, underscoring its importance in understanding the baryon cycle in the low-mass regime. Finally, we provide individual simulated galaxy properties and quantify the fraction of UV-observable mass to support future observational programs aimed at performing a metal budget around dwarf galaxies.more » « less
-
Abstract We present a 3D shape analysis of both dark matter (DM) and stellar matter (SM) in simulated dwarf galaxies to determine whether stellar shape traces DM shape. Using 80 central and satellite dwarf galaxies from three simulation suites (“Marvelous Massive Dwarfs,” “Marvelous Dwarfs,” and the “DC Justice League”) spanning stellar masses of 106–1010M⊙, we measure 3D shapes through the moment of inertia tensor at twice the effective radius to derive axis ratios (C/AandB/A) and triaxiality. We find that stellar shape does follow DM halo shape for our dwarf galaxies. However, the presence of a stellar disk in more massive dwarfs (M* ≳ 107.5M⊙) pulls the distribution of stellarC/Aratios to lower values, while in lower-mass galaxies the gravitational potential remains predominantly shaped by DM. Similarly, stellar triaxiality generally tracks DM triaxiality, with this relationship being particularly strong for nondisky galaxies and weaker in disky systems. These correlations are reinforced by strong alignment between the SM and DM axes, particularly in disk galaxies. Further, we find no detectable difference in either SM or DM shapes when comparing two different supernova feedback implementations, demonstrating that shape measurements are robust to different implementations of baryonic feedback in dwarf galaxies. We also observe that a dwarf galaxy’s shape is largely unperturbed by recent mergers. This comprehensive study demonstrates that stellar shape measurements can serve as a reliable tool for inferring DM shapes in dwarf galaxies.more » « less
-
Chiozzi, Gianluca; Ibsen, Jorge (Ed.)
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
-
Abstract We present power spectra of the cosmic microwave background (CMB) anisotropy in temperature and polarization, measured from the Data Release 6 maps made from Atacama Cosmology Telescope (ACT) data. These cover 19,000 deg2of sky in bands centered at 98, 150 and 220 GHz, with white noise levels three times lower thanPlanckin polarization. We find that the ACT angular power spectra estimated over 10,000 deg2, and measured to arcminute scales in TT, TE and EE, are well fit by the sum of CMB and foregrounds, where the CMB spectra are described by the ΛCDM model. Combining ACT with larger-scalePlanckdata, the joint P-ACT dataset provides tight limits on the ingredients, expansion rate, and initial conditions of the universe. We find similar constraining power, and consistent results, from either thePlanckpower spectra or from ACT combined withWMAPdata, as well as from either temperature or polarization in the joint P-ACT dataset. When combined with CMB lensing from ACT andPlanck, and baryon acoustic oscillation data from the Dark Energy Spectroscopic Instrument (DESI DR1), we measure a baryon density of Ωbh2= 0.0226 ± 0.0001, a cold dark matter density of Ωch2= 0.118 ± 0.001, a Hubble constant ofH0= 68.22 ± 0.36 km/s/Mpc, a spectral index ofns= 0.974 ± 0.003, and an amplitude of density fluctuations ofσ8= 0.813 ± 0.005. Including the DESI DR2 data tightens the Hubble constant toH0= 68.43 ± 0.27 km/s/Mpc; ΛCDM parameters agree between the P-ACT and DESI DR2 data at the 1.6σlevel. We find no evidence for excess lensing in the power spectrum, and no departure from spatial flatness. The contribution from Sunyaev-Zel'dovich (SZ) anisotropy is detected at high significance; we find evidence for a tilt with suppressed small-scale power compared to our baseline SZ template spectrum, consistent with hydrodynamical simulations with feedback.more » « less
An official website of the United States government

Full Text Available